
1CSI

CSI

Source Code to Object Code
Traceability Brainstorming Session

Mike DeWalt
Certification Services, Inc.
Voice +1.425.228.8712 Fax +1.425.271.3570
Email: mike.dewalt@certification.com

This brainstorming session is designed to produce ideas and potential text for a
notice on source to object code traceability. This is mainly concerned with the
interpretation of DO-178B/ED-12B sections 4.4.2 (b) and 6.4.4.2(b). A grass-
horse version of the notice is provided as a starting point.

2CSI

CSI CSI

Structural Coverage

• Requirement for Statement, Decision &
MCDC coverage analysis = f(SW level)

• Purpose is to find unexplored behavior
• All coverage analysis can be performed on

source? Yes or No?
• Compiler considerations section causes

confusion and needs clarification

Test coverage analysis addressed in section 6.4.4 of DO-178B is embodied in a
number of the objectives of the document. The two components of this analysis
are Requirements-Based Test Coverage Analysis in section 6.4.4.1 and Structural
coverage Analysis in section 6.4.4.2. The objectives for structural coverage
analysis only apply for software levels A, B, and C . The purpose of this analysis
is to determine which code structure was not exercised by the requirements based
tests. Section 6.4.4.2 (b) indicates that this structural analysis may be performed
on the source code. For level A software, DO-178B section 6.4.4.2 (b) indicates
that additional verification may be required if the compiler generates object code
that is not directly traceable to the Source Code Exactly what additional
verification is needed and how source can be shown directly traceable to object
code has been confusing to regulatory authorities and industry and has resulted in
inconsistent application of this section. Section 4.4.2 (b), Language and Compiler
Considerations, provide some insight into what is meant by traceability issue. As
can be established from the above extract from DO-178B, the purpose of the
traceability exercise is to identify added functionality not visible at the source
code level. Specific examples were initializations, built in error handling, etc.
Therefore any traceability exercise need only demonstrate that the exercise is
capable of detecting this type of added functionality. Some people have read this
to mean disassembly of the object into the source and others have assumed this
requires MCDC at the object code.

3CSI

CSI CSI

Issue

• If A/B<C Then P1
• Else P2
• Endif

• LD R1, A
• LD R2, B
• JMPNZ S0
• CALL DIV0
• S0 DIV
• LD R2, C
• SUB R1, R2
• JMPN S1
• CALL P1
• JMP S3
• S1 CALL P2
• S2 Do Something

The above code fragment represents a test on a logical operation. The logical
operation involves a division before the test is made. The compiler decides
that before any division is performed it will check for a zero dividend and then
fix it up so that the division will occur but wont result in an overflow. This is
done in the Call DIV0 routine. There is no evidence of this from the source
code. This may even be a built in compiler function that doesn’t require any
compile options (unlikely). This brings up two issues. One is how to detect
that this functionality exists and second how to ensure that it behaves correctly
and doesn’t create anomalous behavior. Note that the If-Then-Else assembly
code is incorrect. The idea behind sections 4.4.2 and 6.4.4.2 in DO-178B was
to detect the former and not the latter. In all but extremely rare cases the
normal verification activity will pick up the latter condition.

4CSI

CSI CSI

What does 178B Really Say
• 4.4.2 (b) - To implement

certain features, compilers for
some languages may produce
object code that is not directly
traceable to the source code,
for example, initialization,
built-in error detection or
exception handling
(subparagraph 6.4.4.2, item
b). The software planning
process should provide a
means to detect this object
code and to ensure
verification coverage and
define the means in the
appropriate plan.

• 6.4.4.2 (b) - The structural
coverage analysis may be
performed on the Source Code,
unless the software level is A
and the compiler generates
object code that is not directly
traceable to Source Code
statements. Then, additional
verification should be performed
on the object code to establish
the correctness of such generated
code sequences. A compiler-
generated array-bound check in
the object code is an example of
object code that is not directly
traceable to the Source Code

5CSI

CSI CSI

We need two efforts

• How to detect the
functionality?

• How to verify any
detected functionality

This all boils down to the following when decoding the DNA in sections 4.4.2
and 6.4.4.2 .

1. We must make it clear that these sections do not require any activity to
ensure that generated code sequences are correct. This is accomplished under
other objectives.

2. We need to ensure that the giudance in this section results in a requirement
to perform structural coverage at the object code level.

6CSI

CSI CSI

Effect of Language Features

• Hidden features
– No added functionality
– Added functionality

• Examples
– Polymorphism C++
– Garbage Collection Java

• Explicit consideration required
• May require NRS/technical specialist

A number languages have features that complicate the ability to detect or
determine if there is added functionality. In some cases the visible language is
just a meta langauge and quite different than what is finally installed in the
machine. Polymorphism from C++ is a good example of this type of issue.
What appears to be a simple statement in the C++ code is actually part of a
case statement which established which executable is executed. There may be
cases not executed during the normal evaluation or there may be compiler
added robustness added.

There should be explicit determination of the impact of any language being
used.

